solve this please
please

Answer:
Step-by-step explanation:
cos(2a) = cos^2(a) - sin^2(a)
cos(2a) = 2cos^(a) - 1
cos(2a) = 11/25
11/25 = 2 cos^(a) - 1 Add 1 to both sides
1 + 11/25 = 2 cos^2
25/25 + 11/25 = 2 cos^2(a)
36/25 = 2 cos^2 (a) Divide by 2
36/50 = cos^2 (a) Take the square root of both sides.
6/5*sqrt(2) = cos(a)
One is given the following:
One is asked to prove the following:
In order to prove the statement above, one will need to use a trigonometric identity. In this case, the following identity is the most relevant in the proof.
[tex]cos(2a)=2cos^2(A)-1[/tex]
One can manipulate this identity to suit the needs of the given problem:
[tex]cos(2a)=2cos^2(A)-1[/tex]
[tex]cos(2a)+1=2cos^2(A)[/tex]
[tex]\frac{cos(2a)+1}{2}=cos^2(A)[/tex]
[tex]\sqrt{\frac{cos(2a)+1}{2}}=cos(A)[/tex]
Now substitute the given information into this identity,
[tex]cos(2A)=\frac{11}{25}[/tex]
[tex]\sqrt{\frac{cos(2a)+1}{2}}=cos(A)[/tex]
Substitute,
[tex]\sqrt{\frac{\frac{11}{25}+1}{2}}=cos(A)[/tex]
Simplify, remember, any number over itself equals (1) and, in order to add two fractions, they must have the same denominator.
[tex]\sqrt{\frac{\frac{11}{25}+1}{2}}=cos(A)[/tex]
[tex]\sqrt{\frac{\frac{11}{25}+\frac{25}{25}}{2}}=cos(A)[/tex]
[tex]\sqrt{\frac{\frac{36}{25}}{2}}=cos(A)[/tex]
[tex]\sqrt{\frac{18}{25}}=cos(A)[/tex]
[tex]\frac{3\sqrt{2}}{5}=cos(A)[/tex]
Manipulate so that it resembles the given information; remember, any number over itself is (1), multiplying an equation by (1) doesn't change it,
[tex]\frac{3\sqrt{2}}{5}=cos(A)[/tex]
[tex]\frac{3\sqrt{2}}{5}*\frac{\sqrt{2}}{\sqrt{2}}=cos(A)[/tex]
[tex]\frac{3\sqrt{2*2}}{5*\sqrt{2}}=cos(A)[/tex]
[tex]\frac{6}{5\sqrt{2}}=cos(A)[/tex]