Respuesta :

Answer:

Step-by-step explanation:

cos(2a) = cos^2(a) - sin^2(a)

cos(2a) = 2cos^(a) - 1

cos(2a) = 11/25

11/25 = 2 cos^(a) - 1             Add 1 to both sides

1 + 11/25 = 2 cos^2

25/25 + 11/25 = 2 cos^2(a)

36/25 = 2 cos^2 (a)            Divide by 2

36/50 = cos^2 (a)               Take the square root of both sides.

6/5*sqrt(2) = cos(a)            

One is given the following:

  • [tex]cos(2A)=\frac{11}{25}[/tex]

One is asked to prove the following:

  • [tex]cos(A)=\frac{6}{5\sqrt{2}}[/tex]

In order to prove the statement above, one will need to use a trigonometric identity. In this case, the following identity is the most relevant in the proof.

[tex]cos(2a)=2cos^2(A)-1[/tex]

One can manipulate this identity to suit the needs of the given problem:

[tex]cos(2a)=2cos^2(A)-1[/tex]

[tex]cos(2a)+1=2cos^2(A)[/tex]

[tex]\frac{cos(2a)+1}{2}=cos^2(A)[/tex]

[tex]\sqrt{\frac{cos(2a)+1}{2}}=cos(A)[/tex]

Now substitute the given information into this identity,

[tex]cos(2A)=\frac{11}{25}[/tex]

[tex]\sqrt{\frac{cos(2a)+1}{2}}=cos(A)[/tex]

Substitute,

[tex]\sqrt{\frac{\frac{11}{25}+1}{2}}=cos(A)[/tex]

Simplify, remember, any number over itself equals (1) and, in order to add two fractions, they must have the same denominator.

[tex]\sqrt{\frac{\frac{11}{25}+1}{2}}=cos(A)[/tex]

[tex]\sqrt{\frac{\frac{11}{25}+\frac{25}{25}}{2}}=cos(A)[/tex]

[tex]\sqrt{\frac{\frac{36}{25}}{2}}=cos(A)[/tex]

[tex]\sqrt{\frac{18}{25}}=cos(A)[/tex]

[tex]\frac{3\sqrt{2}}{5}=cos(A)[/tex]

Manipulate so that it resembles the given information; remember, any number over itself is (1), multiplying an equation by (1) doesn't change it,

[tex]\frac{3\sqrt{2}}{5}=cos(A)[/tex]

[tex]\frac{3\sqrt{2}}{5}*\frac{\sqrt{2}}{\sqrt{2}}=cos(A)[/tex]

[tex]\frac{3\sqrt{2*2}}{5*\sqrt{2}}=cos(A)[/tex]

[tex]\frac{6}{5\sqrt{2}}=cos(A)[/tex]