Respuesta :

Answer:

[tex]\displaystyle \theta = \left\{\frac{7\pi}{6}, \, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}[/tex]

Step-by-step explanation:

We want to solve the equation:

[tex]2\sin ^2 \theta + 3\sin \theta + 1 = 0[/tex]

In the interval [0, 2π).

Notice that this is in quadratic form. Namely, by letting u = sin(θ), we acquire:

[tex]\displaystyle 2u^2 + 3u + 1 = 0[/tex]

Factor:

[tex]\displaystyle (2u+1)(u+1) = 0[/tex]

By the Zero Product Property:

[tex]\displaystyle 2u + 1 = 0\text{ or } u + 1 = 0[/tex]

Solve for each case:

[tex]\displaystyle u = -\frac{1}{2} \text{ or } u = -1[/tex]

Back-substitute:

[tex]\displaystyle \sin \theta = -\frac{1}{2} \text{ or } \sin \theta =-1[/tex]

Use the Unit Circle. Hence, our three solutions in the interval [0, 2π) are:

[tex]\displaystyle \theta = \left\{\frac{7\pi}{6}, \, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}[/tex]