Solve each proportion

Answer:
[tex] \frac{11}{b - 1} = \frac{6}{b + 1} \\ 11(b + 1) = (b - 1).6 \\ 11b + 11 = 6b - 6 \\ 11b + 11 - 11 = 6b - 6 - 11 \\ 11b - 6b = 6b - 17 - 6b \\ 5b = - 17 \\ \frac{5b}{5} = \frac{ - 17}{5} \\ b = \frac{ - 17}{5} \\ b = - 3.4[/tex]
[tex]\boxed{\underline{\bf \: Answer}}[/tex]
[tex] \sf \frac{11}{b + 1} = \frac{6}{b + 1} \\ [/tex]
Multiply both sides of the equation by [tex]\left(b-1\right)\left(b+1\right)[/tex], the least common multiple of b-1,b+1.
[tex]\sf\left(b+1\right)\times 11=\left(b-1\right)\times 6 [/tex]
Use the distributive property to multiply b+1 by 11.
[tex]\sf11b+11=\left(b-1\right)\times 6 [/tex]
Subtract 6b from both sides.
[tex]\sf11b+11-6b=-6 [/tex]
Combine 11b and -6b to get 5b.
[tex]\sf5b+11=-6 [/tex]
Subtract 11 from both sides.
[tex]\sf5b=-6-11 [/tex]
Subtract 11 from -6 to get -17.
[tex]\sf5b=-17 [/tex]
Divide both sides by 5.
[tex]\sf \: b=\bf\frac{-17}{5} [/tex]
=> The correct answer is [tex]\bf \: b=\frac{-17}{5} [/tex] or [tex]\bf \: b= -3.4 [/tex] (✓).
__________
Hope it helps.
RainbowSalt2222