A cannon fires a 0.652 kg shell with initial
velocity vi = 12 m/s in the direction = 61 ◦
above the horizontal.
The shell’s trajectory curves downward be-
cause of gravity, so at the time t = 0.473 s
the shell is below the straight line by some
vertical distance h.
Find this distance h in the absence of
air resistance. The acceleration of gravity is
9.8 m/s2 .
Answer in units of m

Respuesta :

 Mass have no effect for the projectile motion and  u want to know the  height "h"   
first,
        find the vertical and horizontal components of velocity 
 vertical component of velocity = 12 sin 61                  
horizontal component of velocity = 12 cos 61
now for the vertical motion ;               
             S = ut + (1/2) at^2
where
 s = h 
u = initial vertical component of velocity 
t = 0.473 s 
a = gravitational deceleration (-g) = -9.8 m/s^2    
       
         h=[12×sin 610×0.473]+[−9.8×(0.473)2] 

u can simplify this and u will get the answer

h=.5Gt2 

H=1.09m

Answer:

height= 6.429m

Explanation:

h is equall to Max height traveled by trajectory body.

Max height= (U²Sin²tita)/2g

Max height = (12²(sin61)²)/(2*9.8)

Max height =( 144*0.875)/19.6

Max height= 6.429 m