Respuesta :

Nayefx

Answer:

A&D

Step-by-step explanation:

we want to solve the following equation for x:

[tex] \displaystyle ( {2}^{x} - 3) ({2}^{x} - 4) = 0[/tex]

to do so let [tex]2^x[/tex] be u and transform the equation:

[tex] \displaystyle (u - 3) (u - 4) = 0[/tex]

By Zero product property we obtain:

[tex] \displaystyle \begin{cases}u - 3 = 0\\ u - 4= 0 \end{cases}[/tex]

Solve the equation for u which yields:

[tex] \displaystyle \begin{cases}u = 3\\ u = 4 \end{cases}[/tex]

substitute back:

[tex] \displaystyle \begin{cases} {2}^{x} = 3\\ {2}^{x} = 4 \end{cases}[/tex]

take logarithm of Base 2 in both sides of the both equations:

[tex] \displaystyle \begin{cases} \log_{2} {2}^{x} = \log_{2} 3\\ \log_{2} {2}^{x} = \log_{2} 4 \end{cases}[/tex]

hence,

[tex] \displaystyle \begin{cases} x_{1} = \log_{2} 3\\ x_{2} = 2 \end{cases}[/tex]

Answer:

( A ) and ( D )

Step-by-step explanation:

( 2^x -3 ) ( [tex]2^x -4[/tex] ) = 0

  • When the the product of factors equals 0, atleast one factor is 0.

[tex]2^x [/tex]- 3 = 0

2^x - 4 = 0

  • Solve for x.

[tex]2^x [/tex]- 3 = 0 , [tex]2^x -4[/tex]

x = [tex]log_2[/tex] (3) , x = 2

The equation has two solutions;

[tex]x_1[/tex] = [tex]log_2[/tex] (3) , [tex]x_2[/tex] = 2.