For a certain company, the cost for producing x items is 55x+300 and the revenue for selling x items is 95x−0.5x2.
Part A. Set up the expression
Part B. Find the values of x that create a profit of $300
Part C. Is it possible to profit $15,000

Respuesta :

Answer:

The right answer is:

(A) [tex]40x-300.25[/tex]

(B) [tex]15[/tex]

(C) [tex]383[/tex]

Step-by-step explanation:

Given:

Producing x items,

= [tex]55x+300[/tex]

Revenue x items,

= [tex]95x-0.5^2[/tex]

= [tex]95 x-0.25[/tex]

Part A:

= [tex]R(x)-C(x)[/tex]

By putting the values, we get

= [tex](95x-0.25)-(55x-0.25)[/tex]

= [tex]40x-300.25[/tex]

Part B:

We know,

P(x) = $300

⇒ [tex]300=40x-300.25[/tex]

   [tex]40x=600.25[/tex]

       [tex]x=\frac{600.25}{40}[/tex]

          [tex]=15.00625[/tex]

or,

          [tex]=15[/tex]

Part C:

We know,

P(x) = $15,000

⇒ [tex]40x-300.25=15000[/tex]

                 [tex]40x=15300.25[/tex]

                     [tex]x=\frac{15300.25}{40}[/tex]

                        [tex]=382.50625[/tex]

or,

                        [tex]=383[/tex]  

The values of x that create a profit of $300 is 60 or 20 items.

What is profit?

Profit is the difference between revenue and cost, it is given by:

Profit = revenue - cost

a) From the situation:

Profit (P) = 95x−0.5x² - (55x + 300)

P = -0.5x² + 40x - 300

B) For a profit of $300:

-0.5x² + 40x - 300 = 300

-0.5x² + 40x - 600 = 0

x = 60 and x = 20

c) For a profit of $15000:

-0.5x² + 40x - 300 = 15000

-0.5x² + 40x - 15300 = 0

The equation cannot be solved

The values of x that create a profit of $300 is 60 or 20 items.

Find out more on profit at: https://brainly.com/question/1078746