Answer:
[tex]\angle PRQ = 80[/tex]
Step-by-step explanation:
Given
[tex]\angle SPR = 145^o[/tex]
[tex]\angle POT = 115^o[/tex]
See attachment
Required
Find [tex]\angle PRO[/tex]
First, calculate [tex]\angle RPO[/tex]
[tex]\angle RPO + \angle SPR = 180[/tex] --- angle on a straight line
So, we have:
[tex]\angle RPO + 145 = 180[/tex]
Collect like terms
[tex]\angle RPO = 180 - 145[/tex]
[tex]\angle RPO = 35[/tex]
Next, calculate PQR
[tex]\angle POR + \angle POT = 180[/tex]
So, we have:
[tex]\angle POR + 115 = 180[/tex]
Collect like terms
[tex]\angle POR = 180-115[/tex]
[tex]\angle POR = 65[/tex]
So, PRO is calculated as:
[tex]\angle PRO + \angle POR + \angle RPO = 180[/tex] --- angles in a triangle
So, we have:
[tex]\angle PRO + 65 + 35= 180[/tex]
[tex]\angle PRO + 100= 180[/tex]
Collect like terms
[tex]\angle PRO = 180-100[/tex]
[tex]\angle PRO = 80[/tex]