Look at the figure below: an image of a right triangle is shown with an angle labeled y If sin y° = 7 over q and tan y° = 7 over r, what is the value of sec y°?
sec y° = q over r
sec y° = 7r
sec y° = 7q
sec y° = r over q

Respuesta :

Answer:

[tex]\sec y=\dfrac{q}{r}[/tex]

Step-by-step explanation:

Given that,

[tex]\sin y=\dfrac{7}{q}[/tex]

and

[tex]\tan y=\dfrac{7}{r}[/tex]

We need to find the value of [tex]\sec y[/tex]. We know that,

[tex]\sec\theta=\dfrac{1}{\cos\theta}[/tex]

Also,

[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}\\\\\cos\theta=\dfrac{\sin\theta}{\tan\theta}[/tex]

Substitute all the values,

[tex]\cos y=\dfrac{\dfrac{7}{q}}{\dfrac{7}{r}}\\\\=\dfrac{7}{q}\times \dfrac{r}{7}\\\\\cos y=\dfrac{r}{q}[/tex]

So,

[tex]\sec y=\dfrac{1}{\dfrac{r}{q}}\\\\\sec y=\dfrac{q}{r}[/tex]

So, the correct option is (a) i.e. [tex]\sec y=\dfrac{q}{r}[/tex].

Answer:

sec y° = q over r

Step-by-step explanation: