Respuesta :

Answer:

-2 is an extraneous solution because it creates 0 in the denominator.

There is one acceptable solution to the equation

Step-by-step explanation:

x² + 5x + 6 = x² + 2x + 3x + 6

                  = x(x + 2) + 3(x + 2)

                  = (x + 2)(x + 3)

[tex]\frac{x}{x+2}+\frac{2}{x^{2}+5x+6}=\frac{5}{(x+3)}\\\\\frac{x}{x+2}+\frac{2}{(x+2)(x+3)}=\frac{5}{(x+3)}\\\\\frac{x*(x+3)}{(x+2)(x+3)}+\frac{2}{(x+2)(x+3)}=\frac{5*(x+2)}{(x+3)(x+2)}\\\\\frac{x^{2}+3x+2}{(x+2)(x+3)}=\frac{5x+10}{(x+3)(x+2)}\\\\[/tex]

x² + 3x + 2 = 5x + 10

x² + 3x - 5x + 2 - 10 = 0

x² - 2x - 8 = 0

x² + 2x - 4x - 8 = 0

x(x + 2) - 4(x + 2) = 0

(x + 2)(x - 4) = 0

x +2 = 0    or x - 4 = 0

x =  - 2    or x = 4