Respuesta :

Answer:

pi/6, 5pi/6, 7pi/6, 11pi/6

Step-by-step explanation:

3(sec x)^2 -4=0

Add 4 on both sides:

3(sec x)^2=4

Divide 3 on both sides:

(sec x)^2=4/3

Take square root of both sides:

sec x=plus/minus sqrt(4/3)

Reciprocal identity:

cos x=plus/minus sqrt(3/4)

Simplify the radical:

cos x=plus/minus sqrt(3)/2

So we are looking on the unit circle where the first coordinate of the order pair is either sqrt(3)/2 or -sqrt(3)/2.

This happens at pi/6, 5pi/6, 7pi/6, 11pi/6

Answer:

[tex]\sf \boxed{\sf x = \dfrac{\pi}{6},\dfrac{5\pi}{6},\dfrac{7\pi}{6},\dfrac{11\pi}{6}}[/tex]

Step-by-step explanation:

A trigonometric equation is given to us , and we need to find the solutions of the equation within the interval [ 0,2π ]

The given equation is ,

[tex]\sf\longrightarrow 3(sec x)^2-4=0 [/tex]

This can be written as ,

[tex]\sf\longrightarrow 3sec^2x - 4 = 0 [/tex]

Add 4 to both sides of the equation ,

[tex]\sf\longrightarrow 3sec^2x = 4 [/tex]

Divide both sides by 3 ,

[tex]\sf\longrightarrow sec^2x =\dfrac{4}{3} [/tex]

Put squareroot on both sides ,

[tex]\sf\longrightarrow sec \ x =\sqrt{\dfrac{4}{3} }[/tex]

Simplify ,

[tex]\sf\longrightarrow sec\ x =\pm \dfrac{2}{\sqrt3} [/tex]

Multiply numerator and denominator by √3 ,

[tex]\sf\longrightarrow \bf sec(x) = \dfrac{ 2\sqrt3}{3},-\dfrac{2\sqrt3}{3} [/tex]

Solve for x ,

[tex]\sf\longrightarrow x = \dfrac{\pi}{6} +2\pi n , \dfrac{11\pi}{6}+2\pi n , \textsf{ for any integer n } . [/tex]

Therefore all the possible solutions are ,

[tex]\sf\longrightarrow \boxed{\blue{\sf x = \dfrac{\pi}{6},\dfrac{5\pi}{6},\dfrac{7\pi}{6},\dfrac{11\pi}{6}}} [/tex]