differentiate with product rule

Answer:
[tex]{ \boxed{ \bf{ \frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx} }}}[/tex]
u = ( x + 1 )
v = ( 2x + 5 )²
[tex]{ \tt{ \frac{dy}{dx} = {(2x + 5) {}^{4} .(1) + (x + 1).(2)(2x + 5) {}^{3} } }} \\ = { \tt{ {(2x + 5)}^{3} ((2x + 5) +(2x + 2) }} \\ = { \tt{ \frac{dy}{dx} = {(2x + 5)}^{3}(4x + 7) }}[/tex]