btwarii
contestada

the function f(x) = -5x^2 +3 is defined over the domain -4< x < -1. find the range of this function.
a. 8 < f(x) < 83
b. 8 ≤ f(x) ≤ 83
c. -77 < f(x) < -2
d. 8 < f(x) < 23

Respuesta :

Answer:

[tex]choice \: c. \: - 77 < f(x) < - 2[/tex]

Step-by-step explanation:

  • Find the y-values of the functions endpoints.

[tex]f( - 4) = - 5 ({ - 4}^{2}) + 3 = - 77[/tex]

[tex]f( - 1) = - 5( { - 1}^{2}) + 3 = - 2[/tex]

Thus finding the range of F(x).

The range of the given function is - 77 < f(x) < - 2.

What is the range of a function?

"The range of a function is a set of all the images of elements in the domain."

The given function is:

f(x) = - 5x² + 3

It is defined over the domain - 4 < x < - 1.

For x = - 4, f(x) = - 5(- 4)² + 3 = - 80 + 3 = - 77

For x = - 1, f(x) = - 5(- 1)² + 3 = - 5 + 3 = - 2

Therefore, the range of the given function f(x) is:

- 77 < f(x) < - 2.

Learn more about the range of a function here: https://brainly.com/question/8841915

#SPJ3