Please read below. Thank you.

Answer:
The equation of the circle is given by:
(x-a)^2+(y-b)^2=r^2
where:
(a,b) is the center of the circle
given that the center of our circle is (2,3) with the radius of 5, the equation will be:
(x+2)^2+(y+3)^2=5^2
expanding the above we get:
x^2+4x+4+y^2+6y+9=25
this can be simplified to be:
x^2+4x+y^2+6y=25-13
x^2+y^2+4x+6y=12
Answer:
[tex]\sf\longrightarrow \boxed{\sf x^2+y^2-4x-6y-12=0}[/tex]
Step-by-step explanation:
Here we are given the radius of circle as 5cm and the centre of the circle is (2,3) . We need to find the equation of the circle. Here we can yse the Standard equation of circle to find the equation .
Standard equation of circle :-
[tex]\sf\implies \green{ (x - h )^2+(y-k)^2 = r^2 }[/tex]
Substitute the respective values ,
[tex]\sf\longrightarrow ( x - 2 )^2 + ( y - 3)^2 = 5^2 [/tex]
Simplify the whole square ,
[tex]\sf\longrightarrow x^2 + 4 -4x + y^2+9-6y = 25[/tex]
Rearrange and add the constants ,
[tex]\sf\longrightarrow x^2 + y^2 -4x -6y +13 = 25 [/tex]
Subtract 25 on both sides ,
[tex]\sf\longrightarrow x^2 +y^2-4x-6y+13-25=0[/tex]
Simplify ,
[tex]\sf\longrightarrow \boxed{\blue{\sf x^2+y^2-4x-6y-12=0}}[/tex]