Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at 2208C with a mass flow rate of 1.2 kg/s. Refrigerant exits at 7 bar, 708C. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine (a) the volumetric flow rates at the inlet and exit, each in m3 /s, and (b) the power input to the compressor, in kW.'

Respuesta :

Answer:

a)[tex]V_1=4.88m^2/s[/tex]

  [tex]V_2=4.88m^2/s[/tex]

b)[tex]P=-119.18kW[/tex]

Explanation:

From the question we are told that:

Steady State Saturated vapor [tex]T_1= -20C=>253k[/tex]

Mass Flow rate [tex]M=1.2kg/s[/tex]

Exit Pressure [tex]P_2=7bar[/tex]

Exit Temperature [tex]T_2=70C=>373k[/tex]

From Refrigerant 134a Properties

[tex]T_1= -20C =>P_1=1.399 bar[/tex]

Generally the equation for Volumetric Flow rate is mathematically given by

For Inlet

[tex]V_1=m\frac{RT_1}{P_1}[/tex]

[tex]V_1=m\frac{8314*253}{1.399*10^3}[/tex]

[tex]V_1=18.97m^2/s[/tex]

For outlet

[tex]V_2=m\frac{RT_2}{P_2}[/tex]

[tex]V_2=1.2*\frac{8314*343}{7*10^3}[/tex]

[tex]V_2=4.88m^2/s[/tex]

b)

Generally the equation for Steady state mass and energy equation  is mathematically given by

[tex]P=m(h_1-h_2)[/tex]

From Refrigerant 134a Properties

[tex]T_1= -20C =>h_1=24.76kJ/kg[/tex]

[tex]T_2= 70C =>h_2=124.08kJ/kg[/tex]

Therefore

[tex]P=1.2(12.76-124.08)[/tex]

[tex]P=-119.18kW[/tex]

Therefore

Power input into the compressor is

[tex]P=-119.18kW[/tex]