Respuesta :

If 180° < θ < 270°, then 90° < θ/2 < 135°, which places θ/2 in the second quadrant so that sin(θ/2) > 0 and cos(θ/2) < 0.

Recall that

cos²(θ/2) = (1 + cos(θ))/2

==>   cos(θ/2) = -√[(1 + (-15/17))/2] = -1/√17

and

sin²(θ/2) = (1 - cos(θ))/2

==>   sin(θ/2) = +√[(1 - (-15/17))/2] = 4/√17

Then

tan(θ/2) = sin(θ/2) / cos(θ/2)

… = (4/√17) / (-1/√17)

… = -4

Otras preguntas