Answer:
The probability of getting a reading between -1.42 degree C and 1.61 degree C is 0.8685.
Step-by-step explanation:
We are given that
[tex]Mean,\mu=0[/tex] degree C
Standard deviation, [tex]\sigma=1[/tex] degree C
We have to find the probability of the reading between -1.42 and 1.61.
[tex]P(-1.42<x<1.61)=P(\frac{-1.42-0}{1}<\frac{x-\mu}{\sigma}<\frac{1.61-0}{1})[/tex]
[tex]P(-1.42<x<1.61)=P(-1.42<Z<1.61)[/tex]
[tex]P(-1.42<x<1.61)=P(Z<1.61)-P(Z<-1.42)[/tex]
Using the formula
[tex]P(a<z<b)=P(z<b)-P(z<a)[/tex]
[tex]P(-1.42<x<1.61)=0.94630-0.07780[/tex]
[tex]P(-1.42<x<1.61)=0.8685[/tex]
Hence, the probability of getting a reading between -1.42 degree C and 1.61 degree C is 0.8685.