Respuesta :

Answer:

[tex]\sf\longrightarrow \boxed{\pink{\sf 3x + 4y -8=0}}[/tex]

Step-by-step explanation:

We need to write the slope intercept form of the equation which passes through (4,-1) and parallel to the line y = -3/4x .

We know that the line parallel to a given line has the same slope . Therefore the slope of the line will be , ( on comparing to Slope Intercept Form ) .

[tex]\sf\longrightarrow Slope =\dfrac{-3}{4}[/tex]

On using point slope form ,

[tex]\sf\longrightarrow y-y_1= m ( x - x_1) [/tex]

Substitute the respective values ,

[tex]\sf\longrightarrow y - (-1) = \dfrac{-3}{4}( x - 4 ) [/tex]

Simplify ,

[tex]\sf\longrightarrow y +1 = \dfrac{-3}{4}x + 3 [/tex]

Multiply both sides by 4 ,

[tex]\sf\longrightarrow 4y + 4 = -3x + 12 [/tex]

Put all terms on same side , i.e. on LHS ,

[tex]\sf\longrightarrow \boxed{\pink{\sf 3x + 4y -8=0}}[/tex]

Hence the equation of the line is 3x + 4y - 8 = 0.