Respuesta :
Answer:
Explanation:
Let the mass of objects be m₁ and m₂ .
Total kinetic energy = 1/2 m₁ v² + 1/2 m₂ v²= 1/2 ( m₁ + m₂ ) v²
Total kinetic energy after collision= 1/2 ( m₁ + m₂ ) v² / 4 = 1/2 ( m₁ + m₂ ) v² x .25
final KE / initial KE = 1/2 ( m₁ + m₂ ) v² x .25 / 1/2 ( m₁ + m₂ ) v²
= 0.25
b )
Applying law of conservation of momentum to the system . Let m₁ > m₂
m₁ v - m₂ v = ( m₁ + m₂ ) v / 2
m₁ v - m₂ v = ( m₁ + m₂ ) v / 2
m₁ - m₂ = ( m₁ + m₂ ) / 2
2m₁ - 2 m₂ = m₁ + m₂
m₁ = 3m₂
m₁ / m₂ = 3 / 1
Answer:
(a) The ratio is 1 : 4.
(b) The ratio is 1 : 3.
Explanation:
Let the mass of each object is m and m'.
They initially move with velocity v opposite to each other.
Use conservation of momentum
m v - m' v = (m + m') v/2
2 (m - m') = (m + m')
2 m - 2 m' = m + m'
m = 3 m' .... (1)
(a) Let the initial kinetic energy is K and the final kinetic energy is K'.
[tex]K = 0.5 mv^2 + 0.5 m' v^2 \\\\K = 0.5 (m + m') v^2..... (1)[/tex]
[tex]K' = 0.5 (m + m') \frac{v^2}{4}.... (2)[/tex]
The ratio is
K' : K = 1 : 4
(b) m = 3 m'
So, m : m' = 3 : 1