Respuesta :
Answer:
Explanation:
Area of the loop = π x ( 55 x 10⁻³ )²
= 9.5 x 10⁻³ m²
Change in Magnetic flux dφ = 450 x 10⁻³ - 350 x 10⁻³ = 150x 10⁻³ Weber.
time dt =.10 s
emf induced = dφ / dt = 150x 10⁻³ Weber / .10 s
= 1.5 V .
b )
Magnetic field is directed outwards and it is increasing so according to Lenz's law , direction of induced current will be clockwise in the loop.
Answer:
(a) 9.5 mV
(b) clockwise
Explanation:
Radius, r = 55 mm
Time, t = 0.1 s
Change in magnetic field, B = 450 - 350 = 100 mT =0.1 T
(a) induced emf is given by
[tex]e = A \frac{dB}{dt}[/tex]
[tex]e = A \frac{dB}{dt}\\\\e=3.14\times 0.055\times0.055\times \frac{0.1}{0.1}\\\\e= 9.5 \times 10^{-3} V = 9.5 mV[/tex]
(b) According to the Lenz law, the direction of current is clockwise.