David can receive one of the following two payment streams:

i. 100 at time 0, 200 at time n, and 300 at time 2n
ii. 600 at time 1 0

At an annual effective interest rate of i, the present values of the two streams arc equal. Given v^n = 0.75941.

Determine i.

Respuesta :

Answer:

3.51%

Step-by-step explanation:

From the given information:

For the first stream, the present value can be computed as:

[tex]= 100 +\dfrac{200}{(1+i)^n}+ \dfrac{300}{(1+i)^{2n}}[/tex]

Present value for the second stream is:

[tex]=\dfrac{600}{(1+i)^{10}}[/tex]

Relating the above two equations together;

[tex]100 +\dfrac{200}{(1+i)^n}+ \dfrac{300}{(1+i)^{2n}} =\dfrac{600}{(1+i)^{10}}[/tex]

consider [tex]v = \dfrac{1}{1+i}[/tex], Then:

[tex]\implies 100+200v^n + 300v^{2n} = 600 v^{10}[/tex]

where:

[tex]v^n = 0.75941[/tex]

Now;

[tex]\implies 100+200(0.75941) + 300(0.75941))^2 = 600 (v)^{10}[/tex]

[tex](v)^{10} = \dfrac{100+200(0.75941) + 300(0.75941))^2 }{600}[/tex]

[tex](v)^{10} = 0.7082[/tex]

[tex](v) = \sqrt[10]{0.7082}[/tex]

v = 0.9661

Recall that:

[tex]v = \dfrac{1}{1+i}[/tex]

We can say that:

[tex]\dfrac{1}{1+i} = 0.9661[/tex]

[tex]1 = 0.9661(1+i) \\ \\ 0.9661 + 0.9661 i = 1 \\ \\ 0.9661 i = 1 - 0.9661 \\ \\ 0.9661 i = 0.0339 \\ \\ i = \dfrac{0.0339}{0.9661} \\ \\ i = 0.0351 \\ \\ \mathbf{i = 3.51\%}[/tex]