contestada

Solve the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate. B = 53.6° C = 104.9° b = 24.1 A = 21.5°, a = 11, c = 28.9 A = 21.5°, a = 13, c = 30.9 A = 19.5°, a = 28.9, c = 11 A = 19.5°, a = 30.9, c = 13

Respuesta :

Answer:

[tex]a =11.0[/tex]

[tex]\angle A =21.5^o[/tex]

[tex]c = 28.9[/tex]

Step-by-step explanation:

Given

[tex]\angle B = 53.6^o[/tex]

[tex]\angle C = 104.9^o[/tex]

[tex]b=24.1[/tex]

Required

Solve the triangle

We have:

[tex]\angle A + \angle B + \angle C =180^o[/tex] --- angles in a triangle

Substitute known values

[tex]\angle A + 53.6^o + 104.9^o =180^o[/tex]

So, we have:

[tex]\angle A =180^o-53.6^o - 104.9^o[/tex]

[tex]\angle A =21.5^o[/tex]

To solve for the sides, we make use of sine rule:

[tex]\frac{a}{\sin A} =\frac{b}{\sin B} = \frac{c}{\sin C}[/tex]

So, we have:

[tex]\frac{a}{\sin (21.5)} =\frac{24.1}{\sin 53.6} = \frac{c}{\sin 104.9}[/tex]

Solving for (a), we have:

[tex]\frac{a}{\sin (21.5)} =\frac{24.1}{\sin 53.6}[/tex]

Make (a) the subject

[tex]a =\frac{24.1}{\sin 53.6} * \sin (21.5)[/tex]

[tex]a =\frac{24.1}{0.8049} * 0.3665[/tex]

[tex]a =11.0[/tex]

To solve for (c), we have:

[tex]\frac{24.1}{\sin 53.6} = \frac{c}{\sin 104.9}[/tex]

Make (c) the subject

[tex]c = \frac{24.1}{\sin 53.6} * \sin 104.9[/tex]

[tex]c = \frac{24.1}{0.8049} * 0.9664[/tex]

[tex]c = 28.9[/tex]