Respuesta :
Answer:
The volume of the gas is 0.015 m^3.
Explanation:
mass, m = 32 g
Temperature, T = 45 °C = 45 + 273 = 318 K
Pressure, P = 728 mm of hg = 0.728 x 13.6 x 1000 x 9.8 = 97027.84 Pa
Atomic mass = 4 x 12 + 10 x 1 = 58 g
Use the ideal gas equation
Let the volume is V.
P V = n R T
[tex]97027.8 \times V = \frac{32}{58}\times 8.31 \times 318 \\\\V = 0.015 m^3[/tex]
Explanation:
The volume of the gas occupied can be calculated by using the ideal gas equation:
[tex]PV=nRT[/tex]
where,
P=pressure of the gas in atm
V=volume of the gas in L.
n=number of moles of the gas
R=0.0821L.atm.mol-1.K-1
T=absolute temperature
To get the volume of the gas, follow the below steps:
1) Calculate the number of moles of gas:
Number of moles of butane=mass of butane given/its molecular mass
[tex]=32g/58.0g/mol\\=0.55mol[/tex]
2) Convert temperature into kelvin scale:
T=(45+273)K=318K
3)Convert pressure into atm:
760 mm Hg =1 atm
then,
728 mm Hg=
728 mm Hg x 1 atm /760 mm Hg
=0.957 atm
Substitute all these values in the ideal gas equation to get the volume:
[tex]V=\frac{nRT}{P} \\V=0.55mol x 0.0821 L.atm.mol-1.K-1 x 318K / 0.957 atm\\V=15.0L[/tex]
Answer:
The volume of butane gas is 15.0 L