Answer:
-10/9 m
Explanation:
Radius of curvature, R=2 m
Focal length of mirror, f=R/2=2/2=1 m
Let height of object=h
Height of image, h'=h-10h=-9h
We have to find the distance of object from the mirror.
Magnification, m= [tex]\frac{h'}{h}=-\frac{v}{u}[/tex]
[tex]m=\frac{-9h}{h}=-9[/tex]
Image is upright and small in size it means the mirror is convex.
Focal length of convex mirror is negative.
f=-1m
[tex]-9=-\frac{v}{u}[/tex]
[tex]v=9u[/tex]
Now, mirror formula
[tex]\frac{1}{v}+\frac{1}{u}=-\frac{1}{f}[/tex]
[tex]\frac{1}{9u}+\frac{1}{u}=\frac{1}{1}[/tex]
[tex]\frac{1+9}{9u}=-1[/tex]
[tex]10=-9u[/tex]
[tex]u=-\frac{10}{9} m[/tex]
Hence, the distance of object from the mirror is -10/9 m