Given StartLayout Enlarged left-brace First-row StartFraction x cubed minus 1 Over x squared minus 1 EndFraction, for x less-than 1 second row StartFraction 3 Over x minus 1 EndFraction, for x greater-than-or-equal-to 1 EndLayout. What is Limit of f (x) as x approaches 1 minus?

Negative three-halves
0
Three-halves
DNE

Given StartLayout Enlarged leftbrace Firstrow StartFraction x cubed minus 1 Over x squared minus 1 EndFraction for x lessthan 1 second row StartFraction 3 Over class=

Respuesta :

Answer:

Its C 3/2 just did the test

Step-by-step explanation:

The value of the [tex]\lim_{ x \rightarrow 1^-}f(x)[/tex] is ∞, since option (d) DNE.

What is function?

Function, in mathematics, is an expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable).

How to evaluate the [tex]\lim_{ x \rightarrow 1^-}f(x)[/tex]?

The given function is [tex]f(x)=\left\{\begin{array}{l}\frac{x^{3}-1}{x^{2}-1}, \text { for } x < 1 \\\frac{3}{x-1}, \text { for } x \geq 1\end{array}\right[/tex].

We need to evaluate the value of  [tex]\lim_{ x \rightarrow {1^-}}f(x)[/tex].

So [tex]\lim_{ x \rightarrow {1^-}}f(x)=\lim_{ x \rightarrow {1}}(\frac{3}{x-1})[/tex]      

                           [tex]=\frac{3}{1-1}[/tex]        

                          [tex]=\frac{3}{0}[/tex]

                         = ∞

Hence the value of the function is ∞.

Learn more about the function on https://brainly.com/question/12431044

#SPJ2