The value of the [tex]\lim_{ x \rightarrow 1^-}f(x)[/tex] is ∞, since option (d) DNE.
What is function?
Function, in mathematics, is an expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable).
How to evaluate the [tex]\lim_{ x \rightarrow 1^-}f(x)[/tex]?
The given function is [tex]f(x)=\left\{\begin{array}{l}\frac{x^{3}-1}{x^{2}-1}, \text { for } x < 1 \\\frac{3}{x-1}, \text { for } x \geq 1\end{array}\right[/tex].
We need to evaluate the value of [tex]\lim_{ x \rightarrow {1^-}}f(x)[/tex].
So [tex]\lim_{ x \rightarrow {1^-}}f(x)=\lim_{ x \rightarrow {1}}(\frac{3}{x-1})[/tex]
[tex]=\frac{3}{1-1}[/tex]
[tex]=\frac{3}{0}[/tex]
= ∞
Hence the value of the function is ∞.
Learn more about the function on https://brainly.com/question/12431044
#SPJ2