Select the correct answer.
Which expression is equivalent to the given expression?
In(2e/x)

A. In 2 - In x
B. In 1 + In 2 - ln x
C. 1 + In 2 - In x
D. In 2 + ln x

Respuesta :

Answer:c

Step-by-step explanation:

The equivalent expression is 1 + In 2 - In x.

How to estimate an equivalent to the given expression?

Given:

[tex]$\ln \left(\frac{2 e}{x}\right)$[/tex]

Apply log rule:

[tex]$\log _{C}\left(\frac{a}{b}\right)=\log _{c}(a)-\log _{c}(b)$[/tex]

[tex]${data-answer}amp;\ln \left(\frac{2 e}{x}\right)=\ln (2 e)-\ln (x) \\[/tex]

= ln (2e) - ln (x)

Apply log rule:

[tex]$\log _{c}(a b)=\log _{c}(a)+\log _{c}(b)$[/tex]

ln (2e) = ln (2) + ln (e)

= ln (2) + ln (e) - ln (x)

Apply log rule:

[tex]$\log _{a}(a)=1$[/tex]

= ln (2)+1-ln (x)

Therefore, the correct answer is option C. 1 + In 2 - In x.

To learn more about log rule

https://brainly.com/question/1807994

#SPJ2