Respuesta :
The equivalent expression is 1 + In 2 - In x.
How to estimate an equivalent to the given expression?
Given:
[tex]$\ln \left(\frac{2 e}{x}\right)$[/tex]
Apply log rule:
[tex]$\log _{C}\left(\frac{a}{b}\right)=\log _{c}(a)-\log _{c}(b)$[/tex]
[tex]${data-answer}amp;\ln \left(\frac{2 e}{x}\right)=\ln (2 e)-\ln (x) \\[/tex]
= ln (2e) - ln (x)
Apply log rule:
[tex]$\log _{c}(a b)=\log _{c}(a)+\log _{c}(b)$[/tex]
ln (2e) = ln (2) + ln (e)
= ln (2) + ln (e) - ln (x)
Apply log rule:
[tex]$\log _{a}(a)=1$[/tex]
= ln (2)+1-ln (x)
Therefore, the correct answer is option C. 1 + In 2 - In x.
To learn more about log rule
https://brainly.com/question/1807994
#SPJ2