Respuesta :

Answer:

option E, C

Step-by-step explanation:

From the graph we will find the equation of g(x).

g(x) is a parabola with vertex ( h, k) = ( 0, 9)

Standard equation of parabola is ,  y = a (x - h)² + k

                                                     y = a (x - 0)² + 9

                                                     y = ax² + 9 ----------  ( 1 )

Now we have to find a .

To find a we will take another point through which the parabola passes .

Let it be ( 3, 0).

Substitute ( 3 , 0 ) in  ( 1 ) =>  0 = a (3 )² + 9

                                     => - 9 = 9a

                                     => a = - 1

Substitute a = - 1 in ( 1 ) => y = -1 x² + 9

                                  => y = - x² + 9

Therefore , g(x) = -x² + 9

Now using the table we will find h(x)

 [tex]h(x) = 4^{x}[/tex]

So g(x) = -x² + 9 and [tex]h(x) = 4^{x}[/tex]

Option A : both function increases on ( 0, ∞ ) - False

               [tex]\lim_{x \to \infty} g(x) = \lim_{x \to \infty} -x^2 + 9[/tex]

                                  [tex]= - \lim_{x\to \infty} x^2 + \lim_{x \to \infty} 9\\\\= - \infty + 9\\\\=- \infty[/tex]

g(x) decreases on ( 0 , ∞)

             [tex]\lim_{x\to \infty} h(x) = \lim_{x \to \infty} 4^{x}[/tex]

                                [tex]= \infty[/tex]

h(x) increases on ( 0, ∞)

option B : g(x) increasing on (- ∞, 0) - False

      g(x) = -x² + 9

       g( -2 ) = - (-2)² + 9

                 = - 4 + 9 = 5

       g ( -5) = - ( -5)² + 9

                =  - 25 + 9 = - 14

   As the value of x moves towards - ∞ , g(x) moves towards - ∞

   Therefore g(x) decreases on  (- ∞, 0)

Option C: y intercept of g(x) is greater than h(x) - True

         y intercept of g(x) = ( 0 , 9 )

         y intercept of h(x)  = ( 0 , 1 )

Option D : h(x) is a linear function - False

Option E : g(2) < h(2) - True

        g(x) =  -x² + 9

        g(2) = -(2)² + 9 = - 4 + 9 = 5

        h(x) = 4ˣ          

        h(2) = 4² = 16