Answer:
[tex](l,w) = (1,17)[/tex]
[tex](l,w) = (2,16)[/tex]
[tex](l,w) = (3,15)[/tex]
---
---
-
[tex](l,w) = (9,9)[/tex]
Step-by-step explanation:
Given
[tex]P = 36ft[/tex] --- perimeter
[tex]l \to length[/tex]
[tex]w \to width[/tex]
Required
Possible dimension of different parallelogram
The perimeter is calculated as:
[tex]P=2(l+w)\\\\\\[/tex]
So,we have:
[tex]2(l+w)=36[/tex]
Divide by 2
[tex]l + w = 18[/tex]
Since l and w must be positive integers, the possible dimensions are:
[tex](l,w) = (1,17)[/tex]
[tex](l,w) = (2,16)[/tex]
[tex](l,w) = (3,15)[/tex]
---
---
-
[tex](l,w) = (9,9)[/tex]