In the figure below, this “double” nozzle discharges water (at 10°C, density= 1000 kg/m3) into the atmosphere at a rate of 0.50 m3/s. The pressure at the inlet is to be 315612 Pa. If the nozzle is lying in a horizontal plane. Jet A is 10 cm in diameter, jet B is 12 cm in diameter, and the pipe (1) is 30 cm in diameter. The x-component of force (Rx) acting through the flange bolts is required to hold the nozzle in place is:

Respuesta :

Solution :

Given data :

p = 315612 Pa

[tex]$V_1=7.07 \ m/sec$[/tex]

At exit of B,

p = [tex]$P_{atm}$[/tex]

[tex]$V_B = 26.1 \ m/sec$[/tex]

At exit of A,

[tex]p=P_{atm}[/tex]

[tex]$V_{A} = 26.1 \ m/s$[/tex]

We need to determine X component of force ([tex]$R_x$[/tex]) to hold in its place.

From figure,

[tex]$\sum F_x = m_0'V_{0x} - m_iV_{ix} $[/tex]

[tex]$=F_x+P_1A_1\sin 30=-mVA-mV_1 \sin 30$[/tex]

[tex]$=F_x=-pA_1\sin 30-m_AV_AA-m_B \sin30$[/tex]

Substitute all the values,

[tex]$=F_x=[-315612 \times \frac{\pi}{4}(0.3)^2 \sin 30]-[26.1 \times 1000 \times 26.1 \frac{\pi}{4}(0.1)^2]-[7.07 \times 1000\times 0.5 \sin 30]$[/tex][tex]$=F_x = -11154.64-5350.21-1767.28$[/tex]

[tex]$F_x = -18.2733 \ kN$[/tex]

Therefore, the force required to hold the nozzle in its place along horizontal direction.

[tex]$F_x = -18.2733 \ kN$[/tex]

Ver imagen AbsorbingMan