Solution :
Given data :
p = 315612 Pa
[tex]$V_1=7.07 \ m/sec$[/tex]
At exit of B,
p = [tex]$P_{atm}$[/tex]
[tex]$V_B = 26.1 \ m/sec$[/tex]
At exit of A,
[tex]p=P_{atm}[/tex]
[tex]$V_{A} = 26.1 \ m/s$[/tex]
We need to determine X component of force ([tex]$R_x$[/tex]) to hold in its place.
From figure,
[tex]$\sum F_x = m_0'V_{0x} - m_iV_{ix} $[/tex]
[tex]$=F_x+P_1A_1\sin 30=-mVA-mV_1 \sin 30$[/tex]
[tex]$=F_x=-pA_1\sin 30-m_AV_AA-m_B \sin30$[/tex]
Substitute all the values,
[tex]$=F_x=[-315612 \times \frac{\pi}{4}(0.3)^2 \sin 30]-[26.1 \times 1000 \times 26.1 \frac{\pi}{4}(0.1)^2]-[7.07 \times 1000\times 0.5 \sin 30]$[/tex][tex]$=F_x = -11154.64-5350.21-1767.28$[/tex]
[tex]$F_x = -18.2733 \ kN$[/tex]
Therefore, the force required to hold the nozzle in its place along horizontal direction.
[tex]$F_x = -18.2733 \ kN$[/tex]