Answer:
[tex]3y - 5x +11=0[/tex]
Step-by-step explanation:
Given
[tex]P(x_1,y_1) = (-1,6)[/tex]
[tex]Q(x_2,y_2) = (9,0)[/tex]
Required
The equation of l
First, calculate the slope (m) of PQ
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{0-6}{9--1}[/tex]
[tex]m = \frac{-6}{10}[/tex]
[tex]m = \frac{-3}{5}[/tex]
Since l is perpendicular to PQ, the slope of l is:
[tex]m_2 = -\frac{1}{m}[/tex]
[tex]m_2= -\frac{1}{-3/5}[/tex]
[tex]m_2 = \frac{5}{3}[/tex]
Next, calculate the midpoint of PQ
[tex]M = \frac{1}{2}(x_1 + x_2,y_1+y_2)[/tex]
[tex]M = \frac{1}{2}(-1+9,6+0)[/tex]
[tex]M = \frac{1}{2}(8,6)[/tex]
[tex]M = (4,3)[/tex]
The equation of l is:
[tex]y = m(x -x_1) + y_1[/tex]
[tex]y = \frac{5}{3}(x -4) +3[/tex]
Multiply through by 3
[tex]3y = 5(x -4) +9[/tex]
Open bracket
[tex]3y = 5x -20 +9[/tex]
[tex]3y = 5x -11[/tex]
Rewrite as:
[tex]3y - 5x +11=0[/tex]