Identify the vertex, focus, and directrix of the graph. Which of the following equations represents the parabola in the graph?


need help with this, i’ll mark you brainliest!!

Identify the vertex focus and directrix of the graph Which of the following equations represents the parabola in the graph need help with this ill mark you brai class=

Respuesta :

Answer:

Equation: [tex](x-2)^2=16(y-2)[/tex]

Vertex: [tex](2,2)[/tex]

Directrix: [tex]y=-2[/tex]

Focus: [tex](2,6)[/tex]

Step-by-step explanation:

Standard Form of Vertical Parabola:

  • Equation -> [tex](x-h)^2=4p(y-k)[/tex] where [tex]p\neq 0[/tex]
  • Vertex -> [tex](h,k)[/tex]
  • Directrix -> [tex]y=k-p[/tex]
  • Focus -> [tex](h,k+p)[/tex]

We know that our vertex is [tex](h,k)[/tex] -> [tex](2,2)[/tex], therefore, we can determine the value of [tex]p[/tex] by selecting a point from the parabola as [tex](x,y)[/tex]:

[tex](x-h)^2=4p(y-k)[/tex]

[tex](x-2)^2=4p(y-2)[/tex]

[tex](6-2)^2=4p(3-2)[/tex]

[tex](4)^2=4p(1)[/tex]

[tex]16=4p[/tex]

[tex]4=p[/tex]

Therefore:

  • Directrix -> [tex]y=k-p[/tex] -> [tex]y=2-4[/tex] -> [tex]y=-2[/tex]
  • Focus -> [tex](h,k+p)[/tex] -> [tex](2,2+4)[/tex] -> [tex](2,6)[/tex]

Conclusion:

  • Equation -> [tex](x-2)^2=16(y-2)[/tex]
  • Vertex -> [tex](2,2)[/tex]
  • Directrix -> [tex]y=-2[/tex]
  • Focus -> [tex](2,6)[/tex]

Review the graph for a visual

Ver imagen goddessboi