Answer:
[tex]\approx 0.59\text{ ft by }0.91\text{ ft}[/tex]
Step-by-step explanation:
Let [tex]\ell[/tex] represent the length of the rectangle. The width can be represented as [tex]0.64\ell[/tex].
The perimeter of a rectangle with lengths [tex]l[/tex] and [tex]w[/tex] is given by [tex]p=2l+2w[/tex].
Thus, we have:
[tex]2\ell+2(0.64\ell)=3,\\2\ell +1.28\ell=3,\\3.28\ell=3,\\\ell=0.91463414634\approx 0.91[/tex]
The width is then [tex]0.64(0.91463414634)=0.58536585365\approx 0.59[/tex].