Answer this question ( Steps required ) Please help

9514 1404 393
Answer:
(2ac+1)/(abc+2c+1)
Step-by-step explanation:
It helps to understand the factoring of the numbers involved.
63 = 3²·7
140 = 2²·5·7
The "change of base" formula is also useful.
[tex]\log_b{a}=\dfrac{\log{a}}{\log{b}}[/tex]
__
Using this, we can write ...
a = log(3)/log(2) ⇒ log(3) = a·log(2)
b = log(5)/log(3) ⇒ log(5) = b·log(3) = ab·log(2)
c = log(2)/log(7) ⇒ log(2) = c·log(7)
This lets us write everything in terms of log(7):
log(2) = c·log(7)
log(3) = ac·log(7)
log(5) = abc·log(7)
__
The desired logarithm is ...
[tex]\log_{140}{}63=\dfrac{\log{63}}{\log{140}}=\dfrac{2\log{(3)}+\log{(7)}}{2\log{(2)}+\log{(5)}+\log{(7)}}\\\\=\dfrac{2ac\cdot\log{(7)}+\log{(7)}}{2c\cdot\log{(7)}+abc\cdot\log{(7)}+\log{(7)}}\\\\\boxed{\log_{140}{63}=\dfrac{2ac+1}{abc+2c+1}}[/tex]
_____
The attachment is a numerical check of this result.