Respuesta :

Given:

The figure of a circle O.

To find:

The value of x.

Solution:

First, label some points on the given figure as shown below.

In triangle BOC,

[tex]OB=OC[/tex]                 (Radii of same circle)

It means [tex]\Delta BOC[/tex] is an isosceles triangle and the base angles of an isosceles triangles are congruent. So,

[tex]\angle OBC\cong \angle OCB[/tex]

[tex]m\angle OBC=m\angle OCB[/tex]

[tex]75^\circ=m\angle OCB[/tex]

In triangle [tex]\Delta BOC[/tex],

[tex]m\angle BOC+m\angle OBC+m\angle OCB=180^\circ[/tex]          (Angle sum property)

[tex]m\angle BOC+75^\circ+75^\circ=180^\circ[/tex]

[tex]m\angle BOC+150^\circ=180^\circ[/tex]

[tex]m\angle BOC=180^\circ-150^\circ[/tex]

[tex]m\angle BOC=30^\circ[/tex]

Now,

[tex]m\angle BOC=m\angle BOC+m\angle COD[/tex]

[tex]m\angle BOC=30^\circ+94^\circ[/tex]

[tex]m\angle BOC=124^\circ[/tex]

Using the central angle theorem, we get

[tex]m\angle BAD=\dfrac{1}{2}\times m\angle BOD[/tex]

[tex]x=\dfrac{1}{2}\times 124^\circ[/tex]

[tex]x=62^\circ[/tex]

Therefore, the correct option is B.

Ver imagen erinna