Consider the following hypothesis test. : : The following results are for two independent samples taken from two populations. Excel File: data10-03.xlsx Enter negative values as negative numbers. a. What is the value of the test statistic? (to 2 decimals) b. What is the -value? (to 4 decimals) c. With , what is your hypothesis testing conclusion? - Select your answer -

Respuesta :

Answer:

[tex]z = -1.53[/tex] --- test statistic

[tex]p = 0.1260[/tex] --- p value

Conclusion: Fail to reject the null hypothesis.

Step-by-step explanation:

Given

[tex]n_1 = 80[/tex]     [tex]\bar x_1= 104[/tex]   [tex]\sigma_1 = 8.4[/tex]

[tex]n_2 = 70[/tex]    [tex]\bar x_2 = 106[/tex]    [tex]\sigma_2 = 7.6[/tex]

[tex]H_o: \mu_1 - \mu_2 = 0[/tex] --- Null hypothesis

[tex]H_a: \mu_1 - \mu_2 \ne 0[/tex] ---- Alternate hypothesis

[tex]\alpha = 0.05[/tex]

Solving (a): The test statistic

This is calculated as:

[tex]z = \frac{\bar x_1 - \bar x_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} }}[/tex]

So, we have:

[tex]z = \frac{104 - 106}{\sqrt{\frac{8.4^2}{80} + \frac{7.6^2}{70} }}[/tex]

[tex]z = \frac{104 - 106}{\sqrt{\frac{70.56}{80} + \frac{57.76}{70}}}[/tex]

[tex]z = \frac{-2}{\sqrt{0.8820 + 0.8251}}[/tex]

[tex]z = \frac{-2}{\sqrt{1.7071}}[/tex]

[tex]z = \frac{-2}{1.3066}[/tex]

[tex]z = -1.53[/tex]

Solving (b): The p value

This is calculated as:

[tex]p = 2 * P(Z < z)[/tex]

So, we have:

[tex]p = 2 * P(Z < -1.53)[/tex]

Look up the z probability in the z score table. So, the expression becomes

[tex]p = 2 * 0.0630[/tex]

[tex]p = 0.1260[/tex]

Solving (c): With [tex]\alpha = 0.05[/tex], what is the conclusion based on the p value

We have:

[tex]\alpha = 0.05[/tex]

In (b), we have:

[tex]p = 0.1260[/tex]

By comparison:

[tex]p > \alpha[/tex]

i.e.

[tex]0.1260 > 0.05[/tex]

So, we fail to reject the null hypothesis.