A nonhomogeneous equation and a particular solution are given. Find a general solution for the equation. y prime prime plus 9 y prime plus 18 y equals

Respuesta :

Answer:

[tex]y_p(x) =c_1e^{-6x} + c_2e^{-3x}+ e^x + 4x^2[/tex]

Step-by-step explanation:

Given

[tex]y" + 9y' + 18y = 24x^2 + 40x + 8 + 12e^x[/tex] ---- (1)

[tex]y_p(x) = e^x + 4x^2[/tex]

Required

The general solution of [tex]y(x)[/tex]

Let

[tex]y = e^{nx}[/tex] be the trial solution of (1)

So:

[tex]y" + 9y' + 18y = 0[/tex] becomes

[tex]n^2 + 9n + 18 = 0[/tex]

Expand

[tex]n^2 + 6n+3n + 18 = 0[/tex]

Factorize

[tex]n(n + 6)+3(n + 6) = 0[/tex]

Factor out n + 6

[tex](n + 6)(n + 3) = 0[/tex]

Split

[tex]n +6 = 0\ or\ n + 3 = 0[/tex]

Solve for n

[tex]n =-6\ or\ n = -3[/tex]

So:

[tex]y = e^{nx}[/tex] becomes:

[tex]y = c_1e^{-6x} + c_2e^{-3x}[/tex]

[tex]y_p(x) = e^x + 4x^2[/tex] becomes

[tex]y_p(x) =c_1e^{-6x} + c_2e^{-3x}+ e^x + 4x^2[/tex]

Where: [tex]c_1[/tex] and [tex]c_2[/tex] are arbitary constants