Respuesta :

Answer:

A.

[tex] x = \frac{7\sqrt{6}{3} [/tex]

[tex] y = \frac{7\sqrt{6}}{3} [/tex]

Step-by-step explanation:

Reference angle = 60°

Opposite = [tex] \frac{7\sqrt{2}}{2} [/tex]

Hypotenuse = x

Adjacent = y

✔️To find x, apply the trigonometric function SOH:

Sin 60° = Opp/Hyp

[tex] sin 60° = \frac{\frac{7\sqrt{2}}{2}}{x} [/tex]

[tex] \frac{\sqrt{3}}{2} = \frac{\frac{7\sqrt{2}}{2}}{x} [/tex] (sin 60 = √3/2)

[tex] \frac{\sqrt{3}}{2} = \frac{7\sqrt{2}}{2}*\frac{1}{x} [/tex]

[tex] \frac{\sqrt{3}}{2} = \frac{7\sqrt{2}}{2x} [/tex]

Cross multiply

[tex] \sqrt{3}*2x = 7\sqrt{2}*2 [/tex]

[tex] 2\sqrt{3}*x = 14\sqrt{2} [/tex]

Divide both sides by 2

[tex] \sqrt{3}*x = 7\sqrt{2} [/tex]

Divide both sides by √3

[tex] x = \frac{7\sqrt{2}}{\sqrt{3}} [/tex]

Rationalize

[tex] x = \frac{7\sqrt{2}*\sqrt{3}}{\sqrt{3}*\sqrt{3}} [/tex]

[tex] x = \frac{7\sqrt{6}{3} [/tex]

✔️To find y, apply the trigonometric function TOA:

Tan 60° = Opp/Adjacent

[tex] Tan 60° = \frac{\frac{7\sqrt{2}}{2}}{y} [/tex]

[tex] \sqrt{3} = \frac{\frac{7\sqrt{2}}{2}}{y} [/tex] (tan 60 = √3)

[tex] \sqrt{3} = \frac{7\sqrt{2}}{2}*\frac{1}{y} [/tex]

[tex] \sqrt{3} = \frac{7\sqrt{2}}{2y} [/tex]

Cross multiply

[tex] \sqrt{3}*2y = 7\sqrt{2} [/tex]

[tex] 2\sqrt{3}*y = 7\sqrt{2} [/tex]

Divide both sides by √3

[tex] y = \frac{7\sqrt{2}}{\sqrt{3}} [/tex]

Rationalize

[tex] y = \frac{7\sqrt{2}*\sqrt{3}}{\sqrt{3}*\sqrt{3}} [/tex]

[tex] y = \frac{7\sqrt{6}}{3} [/tex]