Answer:
[tex]Fraction = \frac{31}{38}[/tex]
[tex]\theta = 296.18^\circ[/tex]
[tex]Area = 29.62 \pi[/tex]
Step-by-step explanation:
Given
[tex]r = 6[/tex]--- radius
[tex]L = 31[/tex] --- arc length
Solving (a): Fraction represented by the arc
First, calculate the circumference (C)
[tex]C = 2\pi r[/tex]
So, we have:
[tex]C = 2 * 3.14 * 6[/tex]
[tex]C = 38[/tex] --- approximated
So, the fraction represented by the arc is:
[tex]Fraction = \frac{L}{C}[/tex]
[tex]Fraction = \frac{31}{38}[/tex]
Solving (b): Measure of the center angle
Using arc length formula, we have:
[tex]L = \frac{\theta}{360} * 2\pi r[/tex]
This gives
[tex]31 = \frac{\theta}{360} * 2 * 3.14 * 6[/tex]
[tex]31 = \frac{\theta}{360} * 37.68[/tex]
Make [tex]\theta[/tex] the subject
[tex]\theta = \frac{360 * 31}{37.68}[/tex]
[tex]\theta = 296.18^\circ[/tex]
Solving (c): The area of the sector
This is calculated as:
[tex]Area = \frac{\theta}{360} * \pi r^2[/tex]
So, we have:
[tex]Area = \frac{296.18}{360} * \pi * 6^2[/tex]
[tex]Area = \frac{296.18}{360} * \pi * 36[/tex]
Divide 360 and 36
[tex]Area = \frac{296.18}{10} * \pi[/tex]
[tex]Area = 29.618 * \pi\\[/tex]
[tex]Area = 29.62 \pi[/tex] --- approximated