An ideal massless spring with a spring constant of 2.00 N/m is attached to an object of 75.0 g. The system has a small amount of damping. If the amplitude of the oscillations decreases from 10.0 mm to 5.00 mm in 15.0 s, what is the magnitude of the damping constant b

Respuesta :

Answer: 0.00693

Explanation:

Given

Spring constant [tex]k=2\ N/m[/tex]

Mass of object [tex]m=75\ g[/tex]

The amplitude of the oscillation decreases from 10 mm to 5 mm  in 15 s

Equation of amplitude for the ideal spring-mass system is

[tex]\Rightarrow A=A_oe^{-\frac{bt}{2m}}\quad \quad [\text{b=damping constant}]\\\text{Insert the values}\\\\\Rightarrow 5=10e^{\frac{b\times 15}{2\times 0.075}}\\\\\Rightarrow e^{-\frac{b\times 15}{2\times 0.075}}=0.5\\\\\text{Taking natural log both sides}\\\\\Rightarrow \ln \left(e^{-\frac{b\times 15}{2\times 0.075}}\right)=\ln 0.5\\\\\Rightarrow -\dfrac{15b}{0.15}=-0.693\\\\\Rightarrow b=0.00693[/tex]