Answer:
[tex]y = -\frac{1}{4}x + \frac{3}{4}[/tex]
Step-by-step explanation:
First, find the slope. The slope can be found by using the following equation:
slope [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Let:
[tex](x_1 , y_1) = (-1 , 1)\\(x_2 , y_2) = (3 , 0)[/tex]
Plug in the corresponding numbers to the corresponding variables:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 1}{3 - (-1)} = \frac{-1}{3 + 1} = -\frac{1}{4}[/tex]
Plug in [tex]-\frac{1}{4}[/tex] into the equation for slope:
y = mx + b
Note that:
y = y
m = slope
x = x
b = y-intercept
[tex]y = -\frac{1}{4}x + b[/tex]
Plug in a point into the equation. In this case, I will use b(3 , 0). Remember (x , y):
[tex]0 = -\frac{1}{4}(3) + b \\0 = -\frac{1 * 3}{4} + b\\0 = -\frac{3}{4} + b\\0 (+\frac{3}{4}) = -\frac{3}{4} (+\frac{3}{4}) + b\\b = \frac{3}{4}[/tex]
Equation:
[tex]y = -\frac{1}{4}x + \frac{3}{4}[/tex]