Answer:
Order of the Matrix will be
[tex]\left[\begin{array}{ccc}6&6\\5&-8\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}2&4\\5&-5\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}2&6\\3&4\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}3&2\\4&6\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}-2&-7\\5&9\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}2&5\\-2&4\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}4&-3\\5&2\\\end{array}\right][/tex]
Step-by-step explanation:
Given - The matrices are -
[tex]\left[\begin{array}{ccc}2&6\\3&4\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}-2&-7\\5&9\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}6&6\\5&-8\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}2&4\\5&-5\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}2&5\\-2&4\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}4&-3\\5&2\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}3&2\\4&6\\\end{array}\right][/tex]
To find - Arrange the matrices in increasing order of their determinant values.
Proof -
Determinant of matrix [tex]\left[\begin{array}{ccc}2&6\\3&4\\\end{array}\right][/tex] is
= (2)(4) - (6)(3)
= 8 - 18
= -10
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}2&6\\3&4\\\end{array}\right][/tex] = -10
Determinant of matrix [tex]\left[\begin{array}{ccc}-2&-7\\5&9\\\end{array}\right][/tex] is
= (-2)(9) - (-7)(5)
= -18 + 35
= 17
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}-2&-7\\5&9\\\end{array}\right][/tex] = 17
Determinant of matrix [tex]\left[\begin{array}{ccc}6&6\\5&-8\\\end{array}\right][/tex] is
= (6)(-8) - (6)(5)
= -48 - 30
= -78
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}6&6\\5&-8\\\end{array}\right][/tex] = -78
Determinant of matrix [tex]\left[\begin{array}{ccc}2&4\\5&-5\\\end{array}\right][/tex] is
= (2)(-5) - (4)(5)
= -10 - 20
= -30
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}2&4\\5&-5\\\end{array}\right][/tex] = -30
Determinant of matrix [tex]\left[\begin{array}{ccc}2&5\\-2&4\\\end{array}\right][/tex] is
= (2)(4) - (5)(-2)
= 8 + 10
= 18
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}2&5\\-2&4\\\end{array}\right][/tex] = 18
Determinant of matrix [tex]\left[\begin{array}{ccc}4&-3\\5&2\\\end{array}\right][/tex] is
= (4)(2) - (-3)(5)
= 8 + 15
= 23
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}4&-3\\5&2\\\end{array}\right][/tex] = 23
Determinant of matrix [tex]\left[\begin{array}{ccc}3&2\\4&6\\\end{array}\right][/tex] is
= (3)(6) - (2)(4)
= 18 - 8
= 10
So,
Determinant of matrix [tex]\left[\begin{array}{ccc}3&2\\4&6\\\end{array}\right][/tex] = 10
Now,
Increasing order of Determinant is -
-78 < -30 < -10 < 10 < 17 < 18 < 23
So,
Order of the Matrix will be
[tex]\left[\begin{array}{ccc}6&6\\5&-8\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}2&4\\5&-5\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}2&6\\3&4\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}3&2\\4&6\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}-2&-7\\5&9\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}2&5\\-2&4\\\end{array}\right][/tex]
↓
[tex]\left[\begin{array}{ccc}4&-3\\5&2\\\end{array}\right][/tex]