Two blocks are connected by a massless rope that passes over a 1 kg pulley with a radius of 12 cm. The rope moves over the pulley without slipping. The mass of block A is 2.1 kg and the mass of block B is 4.1 kg. Block A is also connected to a horizontally-mounted spring with a spring constant of 358 J/m2. What is the angular frequency (in rad/s) of oscillations of this system

Respuesta :

Answer:

[tex]F=1.159[/tex]

Explanation:

From the question we are told that:

Mass of pulley [tex]M=1kg[/tex]

Radius [tex]r=12cm[/tex]

Mass of block A [tex]M_a=2.1kg[/tex]

Mass of block B [tex]m_b=4.1kg[/tex]

Spring constant[tex]\mu= 358 J/m2[/tex]

Generally the equation for Torque is mathematically given by

Since [tex]\sumF=ma[/tex]

At mass A

 [tex]T_2-f_3=2.1a[/tex]

At mass B

 [tex]4.8-T_1=4.1a[/tex]

At  Pulley

 [tex]R(T_1-T_2)=\frac{1*1*R^2}{2}\frac{a}{R}[/tex]

 [tex]R(T_1-T_2)=0.55a[/tex]

Therefore the equation for total force F

At mass A+At mass B+At  Pulley

 [tex](T_2-f_3+4.8-T_1+R(T_1-T_2)=2.1a+4.1a+0.55a[/tex]

 [tex](T_2-f_3+4.8-T_1+R(T_1-T_2)=2.7a+4.8a+0.55a[/tex]

 [tex]-f_3+4.1=6.75a[/tex]

 [tex]-f_3=6.75a+4.8[/tex]

Since From above equation

[tex]M_{eff}=6.7kg[/tex]

Therefore

[tex]T=2\pi \sqrt{{\frac{M_{eff}}{k}}[/tex]

[tex]T=2\pi \sqrt{{\frac{6.75}{\mu}}[/tex]

[tex]T=0.862s[/tex]

Generally the equation for frequency is mathematically given by

[tex]F=\frac{1}{T} \\F=\frac{1}{0.862}[/tex]

[tex]F=1.159[/tex]