Respuesta :

Answer:

[tex]\tan(A) = \frac{3}{5}[/tex]

Step-by-step explanation:

Given

[tex]\sin(A) = \frac{3}{\sqrt {34}}[/tex]

[tex]0 \le A \le 90[/tex] --- First Quadrant

Required

Find tan(A)

The sin of an angle is:

[tex]\tan(A) = \frac{Opposite}{Hypotenuse}[/tex]

and

[tex]\sin(A) = \frac{3}{\sqrt {34}}[/tex]

By comparison:

[tex]Opposite = 3[/tex]

[tex]Hypotenuse = \sqrt{34[/tex]

So, the Adjacent is:

[tex]Hypotenuse^2 = Adjacent^2 + Opposite^2[/tex]

[tex](\sqrt{34})^2 = Adjacent^2 + 3^2[/tex]

[tex]34 = Adjacent^2 + 9[/tex]

Collect like terms

[tex]Adjacent^2 =34 - 9[/tex]

[tex]Adjacent^2 =25[/tex]

Take square roots

[tex]Adjacent =\sqrt{25[/tex]

[tex]Adjacent =5[/tex]

The tangent of an angle is:

[tex]\tan(A) = \frac{Opposite}{Adjacent}[/tex]

This gives:

[tex]\tan(A) = \frac{3}{5}[/tex]