Respuesta :

Given:

The height of a golf ball is represented by the equation:

[tex]y=x-0.04x^2[/tex]

To find:

The maximum height of of Anna's golf ball.

Solution:

We have,

[tex]y=x-0.04x^2[/tex]

Differentiate with respect to x.

[tex]y'=1-0.04(2x)[/tex]

[tex]y'=1-0.08x[/tex]

For critical values, [tex]y'=0[/tex].

[tex]1-0.08x=0[/tex]

[tex]-0.08x=-1[/tex]

[tex]x=\dfrac{-1}{-0.08}[/tex]

[tex]x=12.5[/tex]

Differentiate y' with respect to x.

[tex]y''=(0)-0.08(1)[/tex]

[tex]y''=-0.08[/tex]

Since double derivative is negative, the function is maximum at  [tex]x=12.5[/tex].

Substitute [tex]x=12.5[/tex] in the given equation to get the maximum height.

[tex]y=(12.5)-0.04(12.5)^2[/tex]

[tex]y=12.5-0.04(156.25)[/tex]

[tex]y=12.5-6.25[/tex]

[tex]y=6.25[/tex]

Therefore, the maximum height of of Anna's golf ball is 6.25 units.