Answer:
[tex](a)\ L = 18.84[/tex] --- arc length
[tex](b)\ A = 113.04[/tex] --- sector area
Step-by-step explanation:
Given
[tex]r = 12[/tex]
[tex]\theta = 90[/tex]
Solving (a): The arc length
This is calculated using:
[tex]L = \frac{\theta}{360} * 2\pi r[/tex]
So, we have:
[tex]L = \frac{90}{360} * 2* 3.14 * 12[/tex]
[tex]L = 0.25* 2* 3.14 * 12[/tex]
[tex]L = 18.84[/tex]
Solving (b): The sector area
This is calculated using:
[tex]A = \frac{\theta}{360} * \pi r^2[/tex]
So, we have:
[tex]A = \frac{90}{360} * 3.14 * 12^2[/tex]
[tex]A = 0.25 * 3.14 * 12^2[/tex]
[tex]A = 113.04[/tex]