Answer:
[tex]\sum\limits^7_{n=1}(4n - 3)[/tex]
Step-by-step explanation:
Given
[tex]1 + 5 + 9 + .....[/tex]
Required
Write a definition
First, we derive a formula for the series using:
[tex]T_n = a + (n - 1)d[/tex]
From the attached data;
[tex]a = 1[/tex]
[tex]d = 5 - 1 = 4[/tex]
So:
[tex]T_n = a + (n - 1)d[/tex]
[tex]T_n = 1 + (n - 1) * 4[/tex]
[tex]T_n = 1 + 4n - 4[/tex]
Collect like terms
[tex]T_n = 4n - 4+1[/tex]
[tex]T_n = 4n -3[/tex]
So, the definition for first 7 terms is:
[tex]\sum\limits^7_{n=1}(4n - 3)[/tex]