Respuesta :
Answer:
The probability that the difference between the sample mean [tex]\bar{x}[/tex] and the true population mean [tex]\mu[/tex] is : [tex]P[|\bar{x}-\mu|\leq0.7]=0.9876[/tex]
Step-by-step explanation:
Given :
Population standard deviation [tex]\sigma=2.8[/tex].
Sample size [tex]n=100[/tex]
The sample mean standard deviation[tex]=\frac{\sigma}{\sqrt{n}}[/tex]
To find :
The probability that the difference between the sample mean [tex]\bar{x}[/tex] and the true population mean [tex]\mu[/tex]
[tex]\because\frac{\sigma}{\sqrt{n}}=\frac{2.8}{\sqrt{100}}=\frac{2.8}{10}=0.28[/tex]
Now, the probability that the difference between the sample mean [tex]\bar{x}[/tex] and the true population mean [tex]\mu[/tex] is :
[tex]P[|\bar{x}-\mu|\leq0.7][/tex], [tex]n[/tex]is large [tex]\Rightarrow \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=z[/tex]
[tex]\Rightarrow P[\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{0.7}{\frac{\sigma}{\sqrt{n}}}]=P[z<\frac{0.7}{0.28}]=P[z<2.5][/tex]
[tex]\Rightarrow P[z<2.5]=P[-2.5<z<2.5][/tex]
[tex]\Rightarrow P[-2.5<z<2.5]=P[z<2.5]-P[z\leq-2.5]\\\Rightarrow P[z<2.5]-P[z\leq-2.5]=2P[z\leq2.5]-1\\\Rightarrow 2P[z\leq2.5]-1=0.9876[/tex]
Therefore, the probability [tex]P[|\bar{x}-\mu|\leq0.7]=0.9876[/tex]