Respuesta :

msm555

Answer:

Solution given:

The given equation of a line is

ax²+2hxy+by²=0

Let y=mx be any one line of

ax²+2hxy+by²=0

Let the perpendicular line of

y=mx is

x+my=0

According to the question the line x+my=0 is one line of Ax²+2Hxy +By²=0

Substituting value of y

Ax²+2Hx [tex] \frac{ - x}{m} [/tex]+[tex]B \frac{x²}{m²} [/tex]=0

Ax²-[tex] \frac{ 2H}{m}x² [/tex]+[tex]B \frac{x²}{m²} [/tex]=0

Taking LCM

we get

Ax²m²-2mHx²+Bx²=0

x²[Am²-2Hm+B]=0..............[1]

Again.

ax²+2hx(mx)+B(mx)²=0

ax²+2hmx²+Bm²x²=0

x²[a+2hm+Bm²]=0

bm²+2hn+a=0.....................[2]

Taking coefficient of equation 1 &2.

equation 1. b 2h a b 2h

equation 2.A. -2h B A -2H

Doing criss cross multiplication

ignore first coefficient and repeat first and second

again

lines are perpendicular so

[tex] \frac{m²}{2hB} [/tex]=[tex] \frac{m}{aA-bB} [/tex]=[tex]\frac{1}{-2Hb-2hA} [/tex]

Taking 1st & 2nd ratio,we get,

m=[tex] \frac{2hB+2Ha}{aA-bB} [/tex]....[*]

Taking 3rd & 2nd ratio,we get,

m=[tex] \frac{aA-bB}{-2Hb-2hA} [/tex] ....[#]

Again

Equating equation * &# we get;

[tex] \frac{2hB+2Ha}{aA-bB} [/tex]=[tex] \frac{aA-bB}{-2Hb-2hA} [/tex]

(aA-bB)²=-4(hB+Ha)(Hb+HA)

(aA-bB)²+4(hB+Ha)(Hb+HA)=0 is a required condition.