Answer: Â
A. α = - 1.047 rad/s² Â
B. θ = 14.1 rad Â
C. θ = 2.24 rev Â
Explanation: Â
A. Â
We can use the first equation of motion to find the acceleration:
[tex]\omega_f = \omega_i + \alpha t[/tex] Â
where, Â
ωf = final angular speed = 0 rad/s Â
ωi = initial angular speed = (30 rpm)(2Ï€ rad/1 rev)(1 min/60 s) = 3.14 rad/s Â
t = time = 3 s Â
α = angular acceleration = ? Â
Therefore,
[tex]0\ rad/s = 3.14\ rad/s + \alpha(3\ s)[/tex] Â
α = - 1.047 rad/s²
B. Â
We can use the second equation of motion to find the angular distance:
[tex]\theta = \omega_it +\frac{1}{2}\alpha t^2\\\theta = (3.14\ rad/s)(3\ s) + \frac{1}{2}(1.04\ rad/s^2)(3)^2[/tex] Â
θ = 14.1 rad
C. Â
θ = (14.1 rad)(1 rev/2Ï€ rad) Â
θ = 2.24 rev