Respuesta :

Given:

A figure of an isosceles trapezoid with bases 18 and 24, and the vertical height is 4.

To find:

The legs of the isosceles trapezoid.

Solution:

Draw another perpendicular and name the vertices as shown in the below figure.

From the figure it is clear that the AEFD is a rectangle. So,

[tex]EF=AD=18[/tex]

Since ABCD is an isosceles trapezoid, therefore in triangle ABE and DCF,

[tex]AB=DC[/tex]               (Legs of isosceles trapezoid)

[tex]AE=DF[/tex]                (Vertical height of isosceles trapezoid)

[tex]m\angle AEB=m\angle DFC[/tex]             (Right angle)

[tex]\Delta ABE\cong \Delta DCF[/tex]                (HL postulate)

[tex]BE=CF[/tex]                (CPCTC)

Now,

[tex]BE+EF+FC=BC[/tex]

[tex]2BE+18=24[/tex]

[tex]2BE=24-18[/tex]

[tex]2BE=6[/tex]

[tex]BE=3[/tex]

Using Pythagoras theorem in triangle ABE, we get

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

[tex](AB)^2=(AE)^2+(BE)^2[/tex]

[tex](AB)^2=(4)^2+(3)^2[/tex]

[tex](AB)^2=16+9[/tex]

[tex](AB)^2=25[/tex]

Taking square root on both sides, we get

[tex]AB=\pm \sqrt{25}[/tex]

[tex]AB=\pm 5[/tex]

Side length cannot be negative. So, [tex]AB=5[/tex].

Therefore, the length of legs in the given isosceles trapezoid is 5 units.

Ver imagen erinna