Respuesta :

Answer:

[tex]\huge \orange {\boxed {a =202\degree}} [/tex]

[tex] \huge \purple {\boxed { b = 158\degree}} [/tex]

[tex]\huge \red {\boxed {m\angle SOV = 158\degree}} [/tex]

Step-by-step explanation:

In [tex] \odot[/tex] O, ST and VT are tangents at points S and V respectively.

[tex] \therefore OS\perp ST, \:and\: OV\perp VT[/tex]

[tex] \therefore m\angle OST=m\angle OVT = 90\degree [/tex]

In quadrilateral OSTV,

[tex] m\angle SOV +m\angle OST+m\angle OVT+m\angle STV = 360\degree [/tex]

(By interior angle sum postulate of a quadrilateral)

[tex] m\angle SOV +90\degree +90\degree +22\degree = 360\degree [/tex]

[tex] m\angle SOV +202\degree = 360\degree [/tex]

[tex] m\angle SOV = 360\degree-202\degree [/tex]

[tex]\huge \red {\boxed {m\angle SOV = 158\degree}} [/tex]

[tex] \because b = m\angle SOV[/tex]

(Measure of minor arc is equal to measure of its corresponding central angle)

[tex] \huge \purple {\boxed {\therefore b = 158\degree}} [/tex]

[tex] \because a + b= 360\degree [/tex]

(By arc sum property of a circle)

[tex] \therefore a = 360\degree - b[/tex]

[tex] \therefore a = 360\degree -158\degree[/tex]

[tex]\huge \orange {\boxed {\therefore a =202\degree}} [/tex]